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Announcement

Guest visitor 11/18:

Wesley Hejl, UT BME ‘15
Pamela Combs, MCS Clinical Manager

Seton Heart Specialty Care and Transplant
Center

“Ventricular Assist Device (VAD)”



Reading

This week Chapter 14.

Next week Chapter 15.



Outline

- Frank-Starling Law and stroke volume
- Preload and afterload

»Heart as a pump: electrical aspects
»Cardiac muscle cell

»>Action potentials
» Contractile cells
» Autorythmic (pacemaker) cells

> Electrical conduction in the heart
»Neural modulation of heart rate and contraction



Quick review: Heart Anatomy
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Abbreviations: RA, right atrium; RV, right
ventricle; LA, left atrium; LV, left ventricle; T,
tricuspid valve; P, pulmonic valve; M, mitral
valve; A, aortic valve; SVC, superior vena
cava; IVC, inferior vena cava; PA, pulmonary
artery; PV, pulmonary veins
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Energetics: Pressure — Volume Loop
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Energetics: Pressure — Volume Loop

Stroke volume (SV) is the volume of blood pumped by the heart per
beat.

SV = EDV - ESV

Cardiac output (CO) is the flow rate out of the heart in liters per
minute and equal to the stroke volume multiplied by the heart rate.

CO=SVxR



Frank-Starling Law of the Heart

Frank-Starling law states: Stroke volume increase as EDV
Increases.

Preload — the degree of myocardial stretch before
contraction begins.

Starling curve
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Stroke Volume Control via Venous Return

»>Stroke volume increase as EDV increases
>EDV is affected by venous return

>Venous return is affected by:

- Skeletal muscle pump: skeletal muscle contractions squeeze veins
pushing blood toward the heart

- Respiratory pump: decrease in pressure of the thoracic cavity
during inspiration draws blood more blood into vena cava from
veins in the abdomen.

- Sympathetic innervation: constriction of veins by sympathetic
activity.



Left ventricular pressure (mm Hg)

Preload and Afterload

KEY

EDV = End-diastolic volume

ESV = End-systolic volume . )
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HEART AS A PUMP

Electrical Aspects and Reflex
Control



Cardiac muscle cells: Myocardium
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(a)

Intercalated disk
(sectioned)

Intercalated disk:

(b)

Cardiac muscles are connected by intercalated
discs.

Intercalated discs consist of desmosomes and
gap junctions.

Gap junctions electrically connect cardiac
muscle cells allowing waves of depolarization to
spread rapidly from cell to cell.

Mitochondria occupy 1/3 the cell volume; cardiac
muscle consumes 70-80% of delivered oxygen —
more than twice the amount extracted by other
cells.

Intercalated disks

Myocardial
muscle cell

Myocardial muscle cells are branched,
have a single nucleus, and are attached
to each other by specialized junctions

known as intercalated disks.
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Desmosomes

Cell-Cell Adhesions:

Desmosomes: Cell-Cell Anchoring
Junctions

» Adherens junctions sometimes
from punctuated or streaked lines.
In epithelia they can form an
adhesion belt just below the tight
junctions.

 Desmosomes can link a large
number of cells into strings using
intermediate filaments inside the
cells. They provide large tensile
strength.

 Intermediate filaments are made
of keratin (most epithelial cells), or
desmin (heart).

cadherin
family proteins

cytoplasmic
plague made of
intracellular
anchor proteins
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Cardiac muscle cells: Myocardium
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Gap Junctions
Cell-Cell Adhesions: Gap Junctions

Transmembrane sections are aligned,;
each connexin touches 2 on the other side

X
Heart muscle has 0“= =”

: _ oaoiunctions Y,
; ——————eiy (c) Gapjunctlon :
—Cytosol
- Connexin
proteins
Clusters
. ofgap
Intercellular junctions
space create
cytoplasmic
bridges
~Cell between
membrane adjacent
cells.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.




A closer look at the cardiac muscle cell

A small amount of external Ca2+ is

needed to trigger release of Ca2+
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EC COUPLING IN CARDIAC MUSCLE

This figure shows the cellular events leading to contraction
and relaxation in a cardiac contractile cell.
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EC COUPLING IN CARDIAC MUSCLE

This figure shows the cellular events leading to contraction
and relaxation in a cardiac contractile cell.
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This figure shows the cellular events leading to contraction
and relaxation in a cardiac contractile cell.
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Action potential of cardiac contractile cell
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Importance of long refractory period of
cardiac muscle cells

SKELETAL MUSCLE | CARDIAC MUSCLE
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(a) Skeletal muscle fast-twitch fiber: The refractory (c) Cardiac muscle fiber: The refractory
period (yellow) is very short compared with the amount period lasts almost as long as the entire
of time required for the development of tension. muscle twitch.

Refractory period — the time required for Na+ channels to reset to their resting positions in order to respond

to an action potential.
Skeletal muscle — between 1 and 5 msec
Contractile myocardial cell — 200 msec or more that prevents tetanus and, therefore, allows chambers in the

heart to be filled with blood.




Action potential in myocardial autorythmic
cells

Membrane potential (mV)

Autorythmic cells have unstable membrane potential which starts at -60 mV —

pacemaker potential.

Unique Irchannels which are permeable to both K+ and Na+.
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Action potential in myocardial autorythmic
cells

Membrane potential (mV)

Autorythmic cells have unstable membrane potential which starts at -60 mV —

pacemaker potential.
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Main characteristics of action potentials






Signhal conduction in myocardial cells

M Membrane potential
of autorhythmic cell
Electrical—~,
current __ A & O\
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Action potential propagation: spread to adjacent contractile

Conduction system — up to 4 m/sec == il calls.Mirough gep;jancliong.
. . Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.
Cardiac contractile cells — 0.3-0.5 m/sec



Electrical conduction in the heart: “Action”

THE CONDUCTING SYSTEM
OF THE HEART

SA nlode :
Internodal —~>—— %
pathways ‘{y’(\\ F 2
\ ‘\ ’// .
AV node o
AV nodal delay . . o
0.1 sec AV bundle

Purkinje
fibers

@y O

branches

SA node depolarizes.

Electrical activity goes
rapidly to AV node via
internodal pathways.

?
|

Depolarization spreads
more slowly across
atria. Conduction slows
through AV node.

6 Depolarization moves

rapidly through ventricular
conducting system to the
apex of the heart.

Depolarization wave
spreads upward from
the apex.

Sinoatrial (SA) node: 70
impulses/min

Atrioventricular (AV)
node: (50 impulses/min)

AV bundle
L and R bundle branches

Purkinje fibers: (30-40
impulses/min)



Cardiac conduction system

http://www.youtube.com/watch?v=Lt092HZCppo&feature=related










Cardiovascular System — Function/
Control Overview

Auto-regulated Auto-regulated
local circulations local circulations
(cerebral, coronary, (cerebral, coronary,
and renal) and renal)
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“Mathematical modeling of human cardiovascular system for simulation of orthostatic response,” Heart and
Circulatory Physiology, H1920 — H1933, 262(6) 1992



Autonomic Inputs to the Heart

Vagus nerve

y (parasympathetic)
—>

Medulla ——
—

To SA node :

To AV node \-»

Cervical 3
, To SA node ——



natomy of Sympathtl Chain
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Neural Modulation of Heart Rate: autorythmic
cells

Membrane potential (mV)

Sympathetic stimulation speeds

up heart rate:

» Norepinephrine —
sympathetic neurons.

» Epinephrine — adrenal
medulla.

» Bind to B —adrenergic
receptor.

» Increase in ion flow through /r
and Ca2+ channels.

Normal Sympathetic stimulation

Depolarized More rapid depolarization

T T T
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Time (sec)———>

(a)

Parasympathetic stimulation

decreases heart rate:

» Neurotransmitter Acetylcholine
(ACh).

» Activates muscarinic cholinergic
receptors.

» Increases K+ permeability
hyperpolarizing the cells.

» Decreases Ca2+ permeability.

» Longer time to reach the threshold

potential.
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Molecular mechanism of autonomic neural regulation
of SA nodal cells
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Neural modulation of cardiac contraction:

cardiac muscle cells

Epinephrine
and
norepinephrine

|
bindto
By-receptors
1
that activate
cAMP second

messengersystem

|
resultingin phosphorylation of
|

» Increase concentration of Ca2+
released inside myocardial muscle
cells.

» More active myosin crossbridges.

» Stronger contraction.

In addition:

> Increase speed of Ca2+ -ATPase

» Decrease active time of myosin
crossbridges (Why?).

» Briefer muscle twitch.
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KEY binding time
SR = Sarcoplasmic ¢
reticulum

Shorter
Ec_F = Extracelllular More forceful duration
fluid contraction of contraction



