CARDIOVASCULAR PHYSIOLOGY: HEART, PART II

Engineering Physiology I BME 365R Lecture 21 11/13/2014

Announcement

Guest visitor 11/18:

Wesley Hejl, UT BME '15 Pamela Combs, MCS Clinical Manager

Seton Heart Specialty Care and Transplant Center

"Ventricular Assist Device (VAD)"

This week Chapter 14.

Next week Chapter 15.

Outline

>Overview of cardiovascular system

- >Heart anatomy
- >Heart as a pump: mechanical aspects
 - Pressure-Volume loop
 - Frank-Starling Law and stroke volume
 - Preload and afterload
- >Heart as a pump: electrical aspects
 - ≻Cardiac muscle cell
 - ≻Action potentials
 - Contractile cells
 - Autorythmic (pacemaker) cells
 - Electrical conduction in the heart
 - Neural modulation of heart rate and contraction

Quick review: Heart Anatomy

Abbreviations: RA, right atrium; RV, right ventricle; LA, left atrium; LV, left ventricle; T, tricuspid valve; P, pulmonic valve; M, mitral valve; A, aortic valve; SVC, superior vena cava; IVC, inferior vena cava; PA, pulmonary artery; PV, pulmonary veins **Right Side** Superior/Inferior Vena Cava **Right Atrium** Tricuspid Valve **Right Ventricle** Pulmonary Artery Left Side **Pulmonary Vein** Left Atrium (50 - 70 ml)Mitral Valve Left Ventricle (65-135 ml, Cardiac Cycle) Aortic Valve Aorta

http://www.cvphysiology.com/

Energetics: Pressure – Volume Loop

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

Energetics: Pressure – Volume Loop

Stroke volume (SV) is the volume of blood pumped by the heart per beat.

$$SV = EDV - ESV$$

Cardiac output (CO) is the flow rate out of the heart in liters per minute and equal to the stroke volume multiplied by the heart rate.

 $CO = SV \times R$

Frank-Starling Law of the Heart

Frank-Starling law states: Stroke volume increase as EDV increases.

Preload – the degree of myocardial stretch before contraction begins.

Stroke Volume Control via Venous Return

Stroke volume increase as EDV increases

EDV is affected by venous return

>Venous return is affected by:

- Skeletal muscle pump: skeletal muscle contractions squeeze veins pushing blood toward the heart
- *Respiratory pump*: decrease in pressure of the thoracic cavity during inspiration draws blood more blood into vena cava from veins in the abdomen.
- *Sympathetic innervation*: constriction of veins by sympathetic activity.

Preload and Afterload

Preload – stretch of muscle fibers in the left or right ventricle at the EDV (is measured in pressure units)

Afterload – pressure in the right of left ventricle when aortic valve opens.

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

HEART AS A PUMP

Electrical Aspects and Reflex Control

Cardiac muscle cells: Myocardium

- Cardiac muscles are connected by intercalated discs.
- Intercalated discs consist of desmosomes and gap junctions.
- Gap junctions electrically connect cardiac muscle cells allowing waves of depolarization to spread rapidly from cell to cell.
- Mitochondria occupy 1/3 the cell volume; cardiac muscle consumes 70-80% of delivered oxygen – more than twice the amount extracted by other cells.

(h) Intercalated disks Myocardial muscle cell

Myocardial muscle cells are branched, have a single nucleus, and are attached to each other by specialized junctions known as intercalated disks.

Desmosomes

Cell-Cell Adhesions: Desmosomes: Cell-Cell Anchoring Junctions

• Adherens junctions sometimes from punctuated or streaked lines. In epithelia they can form an adhesion belt just below the tight junctions.

• **Desmosomes** can link a large number of cells into strings using intermediate filaments inside the cells. They provide large tensile strength.

• Intermediate filaments are made of keratin (most epithelial cells), or desmin (heart).

Cardiac muscle cells: Myocardium

- Cardiac muscles are connected by intercalated discs.
- Intercalated discs consist of desmosomes and gap junctions.
- Gap junctions electrically connect cardiac muscle cells allowing waves of depolarization to spread rapidly from cell to cell.
- Mitochondria occupy 1/3 the cell volume; cardiac muscle consumes 70-80% of delivered oxygen – more than twice the amount extracted by other cells.

(h) Intercalated disks Myocardial muscle cell

Myocardial muscle cells are branched, have a single nucleus, and are attached to each other by specialized junctions known as intercalated disks.

Gap Junctions Cell-Cell Adhesions: Gap Junctions

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings.

A closer look at the cardiac muscle cell

Action potential of cardiac contractile cell

Action potential of cardiac contractile cell

Action potential of cardiac contractile cell

Importance of long refractory period of cardiac muscle cells

Peak

200 250

Tension

0

<u>Refractory period</u> – the time required for Na+ channels to reset to their resting positions in order to respond to an action potential.

Skeletal muscle – between 1 and 5 msec

Contractile myocardial cell – 200 msec or more that prevents tetanus and, therefore, allows chambers in the heart to be filled with blood

Action potential in myocardial *autorythmic* cells

Autorythmic cells have unstable membrane potential which starts at -60 mV – *pacemaker potential.*

Unique If channels which are permeable to both K+ and Na+.

Action potential in myocardial *autorythmic* cells

Autorythmic cells have unstable membrane potential which starts at -60 mV – *pacemaker potential.*

Unique If channels which are permeable to both K+ and Na+.

Main characteristics of action potentials

TABLE 14-3 Comparison of Action Potentials in Cardiac and Skeletal Muscle

	SKELETAL MUSCLE	CONTRACTILE MYOCARDIUM	AUTORHYTHMIC MYOCARDIUM
Membrane potential	Stable at -70 mV	Stable at -90 mV	Unstable pacemaker potential; usually starts at –60 mV
Events leading to threshold potential	Net Na ⁺ entry through ACh- operated channels	Depolarization enters via gap junctions	Net Na ⁺ entry through I _f chan- nels; reinforced by Ca ²⁺ entry
Rising phase of action potential	Na ⁺ entry	Na ⁺ entry	Ca ²⁺ entry
Repolarization phase	Rapid; caused by K ⁺ efflux	Extended plateau caused by Ca ²⁺ entry; rapid phase caused by K ⁺ efflux	Rapid; caused by K ⁺ efflux
Hyperpolarization	Due to excessive K^+ efflux at high K^+ permeability when K^+ channels close; leak of K^+ and Na ⁺ restores potential to resting state	None; resting potential is –90 mV, the equilibrium poten- tial for K ⁺	Normally none; when repolariza- tion hits -60 mV, the I _f channels open again. ACh can hyperpolar- ize the cell.
Duration of action potential	Short: 1–2 msec	Extended: 200+ msec	Variable; generally 150+ msec
Refractory period	Generally brief	Long because resetting of Na ⁺ channel gates delayed until end of action potential	None

Signal conduction in myocardial cells

Electrical conduction in the heart: "Action"

Cardiac conduction system

http://www.youtube.com/watch?v=Lt092HZCppo&feature=related

Cardiovascular System – Function/ Control Overview

"Mathematical modeling of human cardiovascular system for simulation of orthostatic response," Heart and Circulatory Physiology, H1920 – H1933, 262(6) 1992

Autonomic Inputs to the Heart

Anatomy of Sympathetic Chain

Neural Modulation of Heart Rate: autorythmic

cells

Sympathetic stimulation speeds up heart rate:

- Norepinephrine sympathetic neurons.
- Epinephrine adrenal medulla.
- Bind to β₁ –adrenergic receptor.
- Increase in ion flow through If and Ca2+ channels.

Parasympathetic stimulation decreases heart rate:

- Neurotransmitter Acetylcholine (ACh).
- Activates muscarinic cholinergic receptors.
- Increases K+ permeability hyperpolarizing the cells.
- Decreases Ca2+ permeability.
- Longer time to reach the threshold potential.

Molecular mechanism of autonomic neural regulation of SA nodal cells

Neural modulation of cardiac contraction:

